166 research outputs found

    Information Theory-Guided Heuristic Progressive Multi-View Coding

    Full text link
    Multi-view representation learning aims to capture comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning to different views in a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; evenly measuring the similarities between terms might interfere with optimization. Importantly, few works study the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the perspective of information theory and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided hierarchical Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC constructs self-adjusted contrasting pools, which are adaptively modified by a view filter. Lastly, in the instance-tier, we adopt a designed unified loss to learn representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.Comment: This paper is accepted by the jourcal of Neural Networks (Elsevier) by 2023. A revised manuscript of arXiv:2109.0234

    Rethinking skip connection model as a learnable Markov chain

    Full text link
    Over past few years afterward the birth of ResNet, skip connection has become the defacto standard for the design of modern architectures due to its widespread adoption, easy optimization and proven performance. Prior work has explained the effectiveness of the skip connection mechanism from different perspectives. In this work, we deep dive into the model's behaviors with skip connections which can be formulated as a learnable Markov chain. An efficient Markov chain is preferred as it always maps the input data to the target domain in a better way. However, while a model is explained as a Markov chain, it is not guaranteed to be optimized following an efficient Markov chain by existing SGD-based optimizers which are prone to get trapped in local optimal points. In order to towards a more efficient Markov chain, we propose a simple routine of penal connection to make any residual-like model become a learnable Markov chain. Aside from that, the penal connection can also be viewed as a particular model regularization and can be easily implemented with one line of code in the most popular deep learning frameworks~\footnote{Source code: \url{https://github.com/densechen/penal-connection}}. The encouraging experimental results in multi-modal translation and image recognition empirically confirm our conjecture of the learnable Markov chain view and demonstrate the superiority of the proposed penal connection.Comment: 12 pages, 4 figure

    Intriguing Property and Counterfactual Explanation of GAN for Remote Sensing Image Generation

    Full text link
    Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field. However, when applying GANs in the remote sensing (RS) image generation task, an extraordinary phenomenon is observed: the GAN model is more sensitive to the size of training data for RS image generation than for natural image generation. In other words, the generation quality of RS images will change significantly with the number of training categories or samples per category. In this paper, we first analyze this phenomenon from two kinds of toy experiments and conclude that the amount of feature information contained in the GAN model decreases with reduced training data. Then we establish a structural causal model (SCM) of the data generation process and interpret the generated data as the counterfactuals. Based on this SCM, we theoretically prove that the quality of generated images is positively correlated with the amount of feature information. This provides insights for enriching the feature information learned by the GAN model during training. Consequently, we propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model at the distributional and sample levels, respectively. We theoretically and empirically demonstrate the effectiveness and versatility of our methods. Extensive experiments on three RS datasets and two natural datasets show that our methods outperform the well-established models on RS image generation tasks. The source code is available at https://github.com/rootSue/Causal-RSGAN

    A Unified GAN Framework Regarding Manifold Alignment for Remote Sensing Images Generation

    Full text link
    Generative Adversarial Networks (GANs) and their variants have achieved remarkable success on natural images. However, their performance degrades when applied to remote sensing (RS) images, and the discriminator often suffers from the overfitting problem. In this paper, we examine the differences between natural and RS images and find that the intrinsic dimensions of RS images are much lower than those of natural images. As the discriminator is more susceptible to overfitting on data with lower intrinsic dimension, it focuses excessively on local characteristics of RS training data and disregards the overall structure of the distribution, leading to a faulty generation model. In respond, we propose a novel approach that leverages the real data manifold to constrain the discriminator and enhance the model performance. Specifically, we introduce a learnable information-theoretic measure to capture the real data manifold. Building upon this measure, we propose manifold alignment regularization, which mitigates the discriminator's overfitting and improves the quality of generated samples. Moreover, we establish a unified GAN framework for manifold alignment, applicable to both supervised and unsupervised RS image generation tasks

    Zero-shot Skeleton-based Action Recognition via Mutual Information Estimation and Maximization

    Full text link
    Zero-shot skeleton-based action recognition aims to recognize actions of unseen categories after training on data of seen categories. The key is to build the connection between visual and semantic space from seen to unseen classes. Previous studies have primarily focused on encoding sequences into a singular feature vector, with subsequent mapping the features to an identical anchor point within the embedded space. Their performance is hindered by 1) the ignorance of the global visual/semantic distribution alignment, which results in a limitation to capture the true interdependence between the two spaces. 2) the negligence of temporal information since the frame-wise features with rich action clues are directly pooled into a single feature vector. We propose a new zero-shot skeleton-based action recognition method via mutual information (MI) estimation and maximization. Specifically, 1) we maximize the MI between visual and semantic space for distribution alignment; 2) we leverage the temporal information for estimating the MI by encouraging MI to increase as more frames are observed. Extensive experiments on three large-scale skeleton action datasets confirm the effectiveness of our method. Code: https://github.com/YujieOuO/SMIE.Comment: Accepted by ACM MM 202

    Spatio-Temporal Branching for Motion Prediction using Motion Increments

    Full text link
    Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications, but it remains a challenging task due to the stochastic and aperiodic nature of future poses. Traditional methods rely on hand-crafted features and machine learning techniques, which often struggle to model the complex dynamics of human motion. Recent deep learning-based methods have achieved success by learning spatio-temporal representations of motion, but these models often overlook the reliability of motion data. Additionally, the temporal and spatial dependencies of skeleton nodes are distinct. The temporal relationship captures motion information over time, while the spatial relationship describes body structure and the relationships between different nodes. In this paper, we propose a novel spatio-temporal branching network using incremental information for HMP, which decouples the learning of temporal-domain and spatial-domain features, extracts more motion information, and achieves complementary cross-domain knowledge learning through knowledge distillation. Our approach effectively reduces noise interference and provides more expressive information for characterizing motion by separately extracting temporal and spatial features. We evaluate our approach on standard HMP benchmarks and outperform state-of-the-art methods in terms of prediction accuracy

    Unbiased Image Synthesis via Manifold-Driven Sampling in Diffusion Models

    Full text link
    Diffusion models are a potent class of generative models capable of producing high-quality images. However, they can face challenges related to data bias, favoring specific modes of data, especially when the training data does not accurately represent the true data distribution and exhibits skewed or imbalanced patterns. For instance, the CelebA dataset contains more female images than male images, leading to biased generation results and impacting downstream applications. To address this issue, we propose a novel method that leverages manifold guidance to mitigate data bias in diffusion models. Our key idea is to estimate the manifold of the training data using an unsupervised approach, and then use it to guide the sampling process of diffusion models. This encourages the generated images to be uniformly distributed on the data manifold without altering the model architecture or necessitating labels or retraining. Theoretical analysis and empirical evidence demonstrate the effectiveness of our method in improving the quality and unbiasedness of image generation compared to standard diffusion models

    MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning

    Full text link
    As a successful approach to self-supervised learning, contrastive learning aims to learn invariant information shared among distortions of the input sample. While contrastive learning has yielded continuous advancements in sampling strategy and architecture design, it still remains two persistent defects: the interference of task-irrelevant information and sample inefficiency, which are related to the recurring existence of trivial constant solutions. From the perspective of dimensional analysis, we find out that the dimensional redundancy and dimensional confounder are the intrinsic issues behind the phenomena, and provide experimental evidence to support our viewpoint. We further propose a simple yet effective approach MetaMask, short for the dimensional Mask learned by Meta-learning, to learn representations against dimensional redundancy and confounder. MetaMask adopts the redundancy-reduction technique to tackle the dimensional redundancy issue and innovatively introduces a dimensional mask to reduce the gradient effects of specific dimensions containing the confounder, which is trained by employing a meta-learning paradigm with the objective of improving the performance of masked representations on a typical self-supervised task. We provide solid theoretical analyses to prove MetaMask can obtain tighter risk bounds for downstream classification compared to typical contrastive methods. Empirically, our method achieves state-of-the-art performance on various benchmarks.Comment: Accepted by NeurIPS 202

    Learning to Sample Tasks for Meta Learning

    Full text link
    Through experiments on various meta-learning methods, task samplers, and few-shot learning tasks, this paper arrives at three conclusions. Firstly, there are no universal task sampling strategies to guarantee the performance of meta-learning models. Secondly, task diversity can cause the models to either underfit or overfit during training. Lastly, the generalization performance of the models are influenced by task divergence, task entropy, and task difficulty. In response to these findings, we propose a novel task sampler called Adaptive Sampler (ASr). ASr is a plug-and-play task sampler that takes task divergence, task entropy, and task difficulty to sample tasks. To optimize ASr, we rethink and propose a simple and general meta-learning algorithm. Finally, a large number of empirical experiments demonstrate the effectiveness of the proposed ASr.Comment: 10 pages, 7 tables, 3 figure

    Modeling Multiple Views via Implicitly Preserving Global Consistency and Local Complementarity

    Full text link
    While self-supervised learning techniques are often used to mining implicit knowledge from unlabeled data via modeling multiple views, it is unclear how to perform effective representation learning in a complex and inconsistent context. To this end, we propose a methodology, specifically consistency and complementarity network (CoCoNet), which avails of strict global inter-view consistency and local cross-view complementarity preserving regularization to comprehensively learn representations from multiple views. On the global stage, we reckon that the crucial knowledge is implicitly shared among views, and enhancing the encoder to capture such knowledge from data can improve the discriminability of the learned representations. Hence, preserving the global consistency of multiple views ensures the acquisition of common knowledge. CoCoNet aligns the probabilistic distribution of views by utilizing an efficient discrepancy metric measurement based on the generalized sliced Wasserstein distance. Lastly on the local stage, we propose a heuristic complementarity-factor, which joints cross-view discriminative knowledge, and it guides the encoders to learn not only view-wise discriminability but also cross-view complementary information. Theoretically, we provide the information-theoretical-based analyses of our proposed CoCoNet. Empirically, to investigate the improvement gains of our approach, we conduct adequate experimental validations, which demonstrate that CoCoNet outperforms the state-of-the-art self-supervised methods by a significant margin proves that such implicit consistency and complementarity preserving regularization can enhance the discriminability of latent representations.Comment: Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE) 2022; Refer to https://ieeexplore.ieee.org/document/985763
    corecore